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ANALYTICAL SOLUTIONS FOR TESTING RAY-EFFECT ERRORS

IN NUMERICAL SOLUTIONS OF THE TRANSPORT EQUATION

BRITTON CHANG ∗

1. Introduction. This paper contains three analytical solutions of transport
problems which can be used to test ray-effect errors in the numerical solutions of the
Boltzmann Transport Equation (BTE). We derived the first two solutions and the
third was shown to us by M. Prasad [2]. Since this paper is intended to be an internal
LLNL report, no attempt was made to find the original derivations of the solutions
in the literature in order to cite the authors for their work.

Before we embarked on this project, the only analytical solution known to us
which could serve as a diagnostic test for ray-effects is the solution of an isotropic
point source in a homogeneous non-scattering medium. However this solution is not
an accurate test, because a point source is difficult to represent numerically. Thus
it is useful for testing purposes to have an analytical solution of a localized volume
source. The sources in the three problems below are isotropic spheres centered at the
origin. Since ray-effect oscillations are the most pronounced for the transport in a
vacuum (because the oscillations are not damped out by absorption), the absorption
is set to zero in the regions exterior of the sources in the three problems. Since these
problems are spherically symmetric, they are solved in the 1-D spherical coordinate
system.

2. Problem A. Problem A is an isotropic source in a vacuum. The source is a
sphere of radius a and the vacuum is a sphere of radius b with b > a. The absorption
is everywhere zero. The transport equation for this problem is

Problem A : Ω · ∇ψ = q

4π
, where q =

{

1, r ≤ a

0, r > a,
(2.1)

with the boundary condition

ψ(r = b, µ ≤ 0) = 0.(2.2)

The streaming operator in the 1-D spherical coordinate system is [1]

Ω · ∇ ≡ µ
∂

∂r
+
1− µ2

r

∂

∂µ
,

where µ ≡ Ω · r/r is the cosine of the angle between the neutron’s direction Ω and the
position vector r, and r = |r| is the distance between the position r and the origin.

Equation (2.1) is solved by the method of characteristics, and (2.1) in character-
istic form is

dψ

ds
=

q

4π
,(2.3)
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dr

ds
= µ ,

dµ

ds
=
1− µ2

r
.

The characteristic equations (2.3) are solved by deriving a functional relationship be-
tween r and µ. The differential equation for this functional relationship is determined
by dividing the second equation of (2.3) by the third equation of (2.3)

dr

dµ
=

rµ

1− µ2
.(2.4)

Equation (2.4) can be integrated easily to yield

r
√

1− µ2 = r2

√

1− µ2
2 ,(2.5)

where r2 and µ2 are the integration constants that characterizes a path in (r, µ) space.
Let these integration constants r2 ≡ r(s2) and µ2 ≡ µ(s2) be the final conditions of r
and µ respectively.

Solving (2.5) for µ and substituting the result into the second equation of (2.3)
gives a differential equation for r with a right hand side (rhs) that depends on r only.
This equation can be integrated analytically from s0 to s2. Similarly, a differential
equation for µ with a rhs that depends on µ only can be derived by solving (2.5) for r
and substituting the result into the third equation of (2.3). This differential equation
can also be integrated analytically from s0 to s2. The integrals are

r20 = (1− µ2
2) r

2
2 + (µ2r2 − (s2 − s0))2 ,(2.6)

µ0 =
µ2r2 − (s2 − s0)

r0
,

where r0 ≡ r(s0), µ0 ≡ µ(s0) is the point on the inflow boundary (r0 = b, µ0 < 0)
that the characteristic intersects in the ’backward direction’ from (r2, µ2), and where
s2 − s0 is the path length between (r0, µ0) and (r2, µ2). The formal solution of the
first equation of (2.3) is

ψ(r2, µ2)− ψ(r0, µ0) =

∫ s2

s0

q(r(s))

4π
ds.(2.7)

An understanding of the types of path that (2.6) generates in (r, µ) space helps
to solve the path integral in (2.7). Drawn in Fig. (2.1) are three of types of paths.
The path type depends on the initial condition (r0, µ0). Path C is the ’U’ shaped
arc C0C1C2 that starts from the boundary r = b at C0, reaches its lowest point at
C1, turns upward, and then exits the boundary at C2 without passing through the
source region r ≤ a. On the other hand, path A starts from A0, passes through the
source at the entry and the exit points A1 and A3 respectively, and then exits the
domain at A4. Path B grazes the source at B1. Since the paths above path B do
not intersect the source while the paths below path B intersect the source, then path
B can be considered to be the separatrix that separates the paths that intersect the
source from those that do not. Therefore ψ in the region which is above the separatrix
B is identically zero, because the boundary condition (2.2) of ψ at the starting points
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Fig. 2.1. Characteristic paths in (r, µ) space for the domain 0 ≤ r ≤ 2a

of the paths in this region is zero, and the source integrals in (2.7) for these paths are
also zero.

Consider the region r ≤ a. Let (r2, µ2) be such a point in this region, e.g. the
point A2 in Fig. (2.1). Tracing backwards from A2 with (2.6), let (r0, µ0) be the point
on the boundary which the characteristic intersects, i.e. A0. Furthermore let s1 be
the path parameter for the point A1, r(s1) = a, µ1 ≡ µ(s1). Then (2.7) for the path
A0A1A2 is

ψ(r2, µ2) =

∫ s2

s0

q(r(s))

4π
ds =

∫ s2

s1

q(r(s))

4π
ds =

1

4π
(s2 − s1) ,(2.8)

since ψ(r0 = b, µ0 ≤ 0) = 0 by (2.2), q = 0 in the segment A0A1, and q = 1 in the
segment A1A2.

The path length s2 − s1 between the points A1 and A2 can be determined as
follows. Since (2.6) is a general equation for any pair of points on the characteristic
A0A1A2, then it holds for A1 and A2. Replacing r0, µ0 and s0 in (2.6) by r1, µ1, and
s1 respectively gives a relationship between the points A1 and A2 in terms of s2− s1.
The path length s2− s1 is found by inverting the first of these equations with the left
hand side set equal to a

s2 − s1 = µ2r2 +
√

a2 − (1− µ2
2)r

2
2 .(2.9)

Thus by (2.8) and (2.9), ψ in region r ≤ a is explicitly

ψ(r ≤ a, µ) =
µr +

√

a2 − (1− µ2)r2

4π
.(2.10)

Turning to the region outside of the source r > a. The separatrix B divides this
region into three subregions according to a criterion that depends on µ. The separatrix
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is also needed to derive ψ in these subregions. The equation for the separatrix is
determined from (2.5) the functional relationship between r and µ. Since any pair
of points on the arc B0B1B2 is related by (2.5), then let B1 be the reference point
(r2, µ2) in (2.5). Substituting r2 = a and µ2 = 0, the (r, µ) coordinates of B1 (see

Fig. (2.1) for reference), into (2.5) yields r
√

1− µ2 = a for the separatrix. A more
useful form for the equation of the separatrix is

µ = ±
√

1− a2

r2
.(2.11)

For a point r which is larger than a, (2.11) divides this region into three subregions;
the subregion −1 ≤ µ ≤ −(1 − a2/r2)1/2, the subregion −(1 − a2/r2)1/2 < µ <
(1 − a2/r2)1/2, and the subregion (1 − a2/r2)1/2 ≤ µ ≤ 1. The angular flux ψ is
independent of the source in the first two subregions, because the paths in these
subregions do not intersect the source (see Fig. 2.1 for reference). Since the boundary
condition (2.2) contributes nothing to the angular flux in (2.7), the angular flux ψ is
zero in these two subregions. Since a path from the inflow boundary to a point in
the subregion µ > (1 − a2/r2)1/2 crosses the source region, then the source integral
of (2.7) and hence ψ are non-zero only if µ > (1− a2/r2)1/2 for r > a.

Let us calculate ψ for such a point, e.g. A4. Let s0, s1, s3, and s4 be the path
parameters of A0, A1, A3 and A4 respectively. It is clear from (2.7) that

ψ(r4, µ4) =

∫ s4

s0

q(r(s))

4π
ds =

∫ s3

s1

q(r(s))

4π
ds ,(2.12)

because the source is non-zero only on the path segment A1A2A3. However the last
integral in (2.12) was evaluated in (2.10) and is equal to the rhs of ψ(r3, µ3) in (2.10).
Thus

ψ(r4, µ4) = ψ(r3, µ3) =
µ3a+ |µ3|a

4π
.(2.13)

The equivalence of ψ(r4, µ4) and ψ(r3, µ3) in (2.13) is the mathematical statement
of the conservative nature of the solution of a hyperbolic equation, i.e. that ψ in a
sourceless void is constant on a characteristic.

In order for (2.13) to be a useful solution for ψ(r4, µ4), µ3 needs to be expressed
in terms of r4 and µ4. This expression is given by (2.5), r3

√

1− µ2
3 = r4

√

1− µ2
4.

The substitution r3 = a into this equation yields µ3 = (1− (1− µ2
4)r

2
4/a

2)1/2. Using
the identity µ+ |µ| = 2µH(µ), where H is the Heaviside function

H(ξ) =

{

0, ξ ≤ 0
1, ξ > 0,

then ψ, in the region r > a and µ > (1− a2/r2)1/2, is

ψ(r > a, µ) =
2

4π

√

a2 − (1− µ2)r2H

(

µ−
√

1− a2

r2

)

.(2.14)

Therefore an easy calculation for the scalar flux, φ(r) ≡ 2π
∫ 1

−1
ψ(r, µ)dµ, gives

φ(r) =
1

2
a+

a2 − r2
4r

loge
r + a

|r − a| , ∀ r.(2.15)
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3. Problem B. Problem A is not very realistic because it is absorption-less.
The very fact that it is absorption-less makes it a stringent test for ray effect errors
in a numerical solution. A more realistic model is to put an absorber in the source
region. In photon transport for example the following equation,

Problem B : [Ω · ∇+ σ]ψ = σ
q

4π
, where q =

{

1, r ≤ a

0, r > a
,(3.1)

and the boundary condition (2.2) model a ball which emits photons isotropically into
a vacuum. Let the absorption cross section be large in the source region and be zero
outside the source, i.e.

σ =

{

σ0

a , r ≤ a

0 , r > a
, where σ0 = 1000 .(3.2)

Equation (3.1) is solved by the method of characteristic, and it in characteristic
form is

dψ

ds
+ σψ = σ

q

4π
.(3.3)

The integral form of (3.3) is

ψ(r2, µ2) = e−τ(s2,s0)ψ(r0, µ0) +
1

4π

∫ s2

s0

e−τ(s2,s0)+τ(s,s0)σ(r(s))q(r(s), µ(s))ds,(3.4)

where τ the optical depth is the path integral

τ(s2, s0) ≡
∫ s2

s0

σ(r(s))ds .(3.5)

Note that ψ(r0, µ0) = 0 because of the boundary condition (2.2).
Consider the source region r ≤ a first. Since σ is constant inside the source region

r ≤ a and is zero elsewhere, the path integral in (3.5) is essentially the same kind of
path integral that is in §2. For example the optical depth on the arc A0A1A2 in Fig.
2.1 is τ(s2, s0) = τ(s2, s1) = (σ0/a)(s2 − s1), where the path length s2 − s1 is given
by (2.9). Thus the optical depth inside the source region r ≤ a is

τ(s2, s1) =
σ0

a

(

µ2r2 +
√

a2 − (1− µ2
2)r

2
2

)

.(3.6)

It is also easy to show that the path integral of (3.4) on the arc A0A1A2 gives ψ =
1
4π

(

1− e−(σ0/a)(s2−s1)
)

. As a result of this expression and (3.6), the angular flux is

ψ(r ≤ a, µ) =
1

4π

(

1− e−
σ0
a

(

µr+
√

a2−(1−µ2)r2
)

)

.(3.7)

In the region r > a, ψ(r > a, µ) is non-zero only if µ > (1 − a2/r2)1/2, because
the paths in this subregion emanate from the source. Since this region is a vacuum
and is sourceless, then the fact that ψ is constant on a characteristic can be used to
determine ψ in this region from its value on the surface r = a. For example on the
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Fig. 3.1. A comparison of the σ0 →∞ limit with the two cases σ0 = 100, and 1000.

arc A3A4, ψ(r4, µ4) = ψ(r3, µ3), but ψ(r3, µ3) is given by (3.7). Hence it is easy to
verify that

ψ(r > a, µ) =
1

4π

(

1− e−
σ0
a

(

2
√

a2−(1−µ2)r2
)

)

H

(

µ−
√

1− a2

r2

)

.(3.8)

I do not know any analytical expression for the µ integrals of (3.7) nor of (3.8).
However, in the σ0 →∞ limit, (3.7) and (3.8) simplify to

ψ∞(r, µ) =
1

4π







1 , r < a

H

(

µ−
√

1− a2

r2

)

, r ≥ a .
(3.9)

The scalar flux φ(r) ≡ 2π
∫ 1

−1
ψ∞(r, µ)dµ in this limit is

φ(r) =
1

2







2 , r < a
(

1−
√

1− a2

r2

)

, r ≥ a .
(3.10)

The angular flux of (3.7) and (3.8) is integrated with respect to µ by the mid-point
quadrature for the cases σ0 = 100 and σ0 = 1000. These results are plotted against
the σ0 → ∞ limit (3.10) in Fig. (3.1). The disagreement between the σ0 = 100 case
and the σ0 = ∞ limit is localized to the region of few mean free paths below the
surface of the sphere, and is of the order of a few percent. The relative error between
the σ0 = 1000 case and the σ0 =∞ limit is everywhere less than .01 percent.

4. Problem C. When σ is very large, then as argued in the last problem the
photons do not travel very far from where they are emitted. The photons that are
born deep in the interior of the source do not make it out of the source region. Thus
the only photons that leave the source region and that determine ψ in the region
r > a are those that are emitted within one mean free path of the surface of the
source r = a. In the limit that σ0 = ∞ in (3.1), the source in Problem B can be
replaced by a boundary condition at r = a, and the domain 0 ≤ r ≤ b can also be
replaced by the domain a ≤ r ≤ b. Thus the transport equation for Problem C is

Problem C : Ω · ∇ψ = 0, ψ(r = a, µ > 0) = ψa(µ), ψ(r = b, µ < 0) = 0.(4.1)
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Since ψ is constant on a characteristic, then the solution of (4.1) can be written down
by inspection

ψ(r, µ) = ψa

(
√

1− (1− µ2)
r2

a2

)

H

(

µ−
√

1− a2

r2

)

.(4.2)

For the case that ψa(µ) = 1/(4π), the scalar flux is

φ(r) ≡ 2π
∫ 1

−1

ψ(r, µ)dµ =
1

2

(

1−
√

1− a2

r2

)

, a ≤ r ≤ b .(4.3)

5. Representations in other coordinate systems. In order to use (2.15),
(3.10), and (4.3) as tests for the ray effect errors in the scalar flux which is calculated
in the cartesian or the cylindrical coordinate systems, these equations need to be
expressed in cartesian and cylindrical coordinates. The desired equations for the
scalar flux can be derived by the substitution of r =

√

x2 + y2 + z2 for cartesian

coordinates, and by the substitution of r =
√

ρ2 + z2 for cylindrical coordinates into
these equations.

The formulae (2.10), (2.14), (3.7), (3.8), (3.9), and (4.2) can also be used to
test angular fluxes which are calculated in the cartesian or the cylindrical coordi-
nate systems by expressing them in the coordinates of those systems. The rela-
tionship between the spherical angle µ and the cartesian angles (Ωx,Ωy,Ωz) is µ =

(xΩx + yΩy + zΩz)/
√

x2 + y2 + z2. Similarly, the spherical angle µ and the cylin-

drical angles (cos (ω),Ωz) are related by µ =
(

ρ
√

1− Ω2
z cos (ω) + zΩz

)

/
√

ρ2 + z2,

where cos (ω) is the cosine of the angle between ~ρ and the projection of Ω on the xy
plane [1].
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